Impaired coronary collateral growth in the metabolic syndrome is in part mediated by matrix metalloproteinase 12-dependent production of endostatin and angiostatin.

نویسندگان

  • Tracy Dodd
  • Luke Wiggins
  • Rebecca Hutcheson
  • Erika Smith
  • Alla Musiyenko
  • Brenda Hysell
  • James C Russell
  • Petra Rocic
چکیده

OBJECTIVE We have previously shown that transient coronary artery occlusion stimulated coronary collateral growth (CCG) in healthy (Sprague Dawley) but not in metabolic syndrome (JCR:LA-cp [JCR] ) rats. Here, we sought to determine whether matrix metalloproteinases (MMPs) negatively regulate CCG in the metabolic syndrome via release of endostatin and angiostatin. APPROACH AND RESULTS Rats underwent transient, repetitive left anterior descending occlusion and resultant myocardial ischemia (RI) for 0 to 10 days. CCG was measured in the collateral-dependent and normal zones using microspheres, MMP activation by Western blot, and endostatin and angiostatin by ELISA on days 0, 3, 6, 9, or 10 of RI. Endostatin and angiostatin were increased in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Increased endostatin and angiostatin correlated with increased MMP12 (≈ 4-fold) activation in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Inhibition of MMP12 in JCR rats nearly completely blocked endostatin (≈ 85%) and angiostatin (≈ 90%) generation and significantly improved CCG (collateral-dependent zone flow was ≈ 66% of normal zone flow versus ≈ 12% for JCR RI). CONCLUSIONS Compromised CCG in the metabolic syndrome is, in large part, because of increased MMP12 activation and consequent increased generation of endostatin and angiostatin, which inhibits late-stage collateral remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation.

Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Because of the diffuse nature of their disease, diabetic patients may be at risk for incomplete revascularization, highlighting a potential role for proangiogenic therapy in this group. This study investigates molecular mechanisms of angiogenesis in diabetic patients. Myocardial tissue was harvested from patie...

متن کامل

Effect of Cardiac Rehabilitation Program Based on Combined Training on VEGF/Endostatin Gene Expression Ratio in Patients with Acute Coronary Syndrome

Background: Coronary artery disease is one of the most common causes of death in the world. With the increase in the incidence of these diseases, surgical and non-surgical interventions followed by cardiovascular rehabilitation programs have become more important. The process of angiogenesis and improvement of blood flow is considered as one of the therapeutic goals in these patients, and vascu...

متن کامل

Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide.

BACKGROUND The in vivo mechanism by which inhibition of NO synthase impairs ischemia-induced coronary vascular growth is unknown. We hypothesized that production of the growth inhibitor angiostatin increases during decreased NO production, blunting angiogenesis and collateral growth. METHODS AND RESULTS Measurements were made in myocardial tissue or interstitial fluid (MIF) from dogs undergoi...

متن کامل

Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature.

Impaired angiogenesis could contribute to the increased incidence of coronary and peripheral artery disease in diabetic patients. Angiogenesis is initiated by vascular endothelial growth factor (VEGF), a potent angiogenic cytokine, and suppressed by angiostatin, which is generated by matrix metalloproteinase (MMP)-2 and -9 through proteolytic cleavage of plasminogen. We hypothesized that MMP-2 ...

متن کامل

miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome.

Coronary collateral growth (CCG) is impaired in metabolic syndrome. microRNA-21 (miR-21) is a proproliferative and antiapoptotic miR, which we showed to be elevated in metabolic syndrome. Here we investigate whether impaired CCG in metabolic syndrome involved miR-21-mediated aberrant apoptosis. Normal Sprague-Dawley (SD) and metabolic syndrome [J. C. Russel (JCR)] rats underwent transient, repe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2013